Chapter 10 Continuous Normal Probability Distributions

- I. Characteristics of normal probability distributions
 - A. Continuous: An infinite number of x-axis values may exist.
 - B. Symmetrical around the mean: Each half (50%) of the curve is a mirror image of the other half.
 - C. Bell-shaped: There is 1 peak above the mean, median, and mode.
 - D. Asymptotic: The tail of the distribution approaches, but never touches, the x-axis.
 - E. Variables dealing with size (income, weight, and intelligence) are often normally distributed.

- A. 100% of the outcomes are under the normal curve.
- B. One standard deviation spans approximately 34% of the outcomes in each direction from the mean.
- C. Curves that are flat, more spread out, have a larger standard deviation.
 - Two of Linda's video stores may each have average weekly sales of \$1,800, but sales variability may differ from store 1 to store 2.
 - 2. As shown here, store 1 has a σ = \$400. This represents more variability in weekly sales than exists at store 2, with a σ = \$100.

III. The standard normal distribution

- A. Continuous probability distributions may have an infinite number of means, each with an infinite number of standard deviations. This makes it impossible to have a table for each possible mean and standard deviation.
- B. The standard normal probability distribution avoids this problem by having a mean (μ) of 0 and a standard deviation (σ) of 1. The standard normal distribution is kind of a generic distribution.
 - 1. Distances from the mean are measured in standard deviations.
 - 2. This distance (or number of standard deviations) is called z.
 - 3. The probability distribution associated with all possible z values is the standard normal probability distribution.
 - 4. This distribution is presented as a z table.
 - 5. Chapter 4 used the empirical rule to measure the percent of data within a set number of standard deviations of the mean. The standard normal probability distribution is the mathematical basis for the empirical rule.
- IV. In the above example, store 1 had mean weekly sales of \$1,800 and a standard deviation of \$400. The following example reviews how the empirical rule is used to determine the sales range for 1, 2, and 3 standard deviations. Note how a set probability is associated with each number of standard deviations.

58

Given:
$$\mu = \$1,800$$
 and $\sigma = \$400$

